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The spatially dependent description of the electron kinetics is of vital interest for the modeling of
complete plasma devices. A possible method of dealing with this problem is by the solution of the
Boltzmann equation accounting for the spatial inhomogeneity. This approach can be a complicated
task. On the other hand, this method may be much more efficient than the treatment of the electron
kinetics by simulation techniques. In this paper, the numerical solution of the spatially dependent
Boltzmann equation for an argon plasma in cylindrical geometry is reported. A detailed discussion
on the boundary conditions is presented. The numerical results are compared to results of the
“nonlocal approach,” which is a very efficient method for the solution of the spatially dependent
Boltzmann equation for the limiting case that the energy relaxation length of electrons exceeds the
discharge dimensions. The range of applicability of the nonlocal approach is discussed in terms of
the neutral gas density and the inhomogeneity of the electric field.

PACS number(s): 51.10.+y

I. INTRODUCTION

Due to the growing number of applications of gas dis-
charges their modeling has attracted increasing interest
in recent years (see, e.g., Ref. [1]) for mainly two rea-
sons. First, self-consistent plasma models or numerical
experiments can help to understand the basic physical
properties of concrete plasma devices, and secondly they
can serve as a tool or guide for the discharge construc-
tion. In these models the spatially dependent description
of the electron kinetics plays a central role. The electron
distribution function (EDF) determines the electron in-
duced reactions in the plasma, e.g., the ionization, ex-
citation, or dissociation. It thus strongly influences also
the macroscopic properties of the plasma, like the elec-
tron density profile or the spatial distribution of fluxes
of charged particles, neutral species, and radicals. The
knowledge of the EDF and of its spatial dependence is
thus a basic requirement for self-consistent plasma mod-
els.

Quite complete models have been proposed in recent
times, e.g., for the capacitively or the inductively coupled
rf discharge [2-8]. These models, which consist of vari-
ous modules for determining the EDF, the space charge
potential, the rf field profile, etc., yield quite accurate
results but are, on the other hand, computationally te-
dious. The electron kinetics part is usually particularly
computer intensive and is frequently treated by simula-
tion techniques [2,4,9] or by numerical [10-12] integration
of the Boltzmann equation. However, it is surely desir-
able to develop fast and efficient models which allow one
to perform scans over wide parameter ranges, if possible,
on simple and easily available computers. The formula-
tion of efficient approaches to the description of the spa-
tially dependent electron kinetics is thus an interesting
and promising task.

A considerable reduction of computational work and
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a gain of physical insight may be achieved under condi-
tions where the Boltzmann equation can be solved us-
ing some well-studied approximations. In cases when the
anisotropy of the EDF is small (no considerable influence
of high energetic secondary electrons and elastic collisions
are frequent in comparison to inelastic ones), the usual
two-term approximation for the EDF is applicable [13].
For a dc or a hf electric field of sufficiently high frequency,
the isotropic part of the EDF is time independent [14].
Employing these approximations, the resultant kinetic
equation for the isotropic part of the EDF comprises,
apart from one dimension in velocity or energy space, still
one or more dimensions in configuration space. Numeri-
cal solutions of problems of this kind have been reported
recently [15-17]. However, the numerical solution of the
spatially dependent kinetic equation, resulting from these
approximations, remains still a complicated task.

A simplification of the problem has been proposed by
Bernstein and Holstein [18] and Tsendin [19]. Their
method, the so-called “nonlocal approach,” relies on the
assumption that the entire electron kinetics can be de-
scribed by a single, spatially homogeneous distribution
function of total energy (i.e., kinetic plus potential en-
ergy) of the electrons which is determined from a spa-
tially averaged kinetic equation. The spatially resolved
EDF of kinetic energy can then be calculated from a sort
of “modified Boltzmann relation.” The validity of the
nonlocal approach is limited to conditions where the en-
ergy relaxation length of electrons exceeds the typical
discharge dimensions. Then the spatial redistribution of
energy gains and losses due to the rapid spatial motion of
electrons justifies the determination of the EDF from a
spatially averaged kinetic equation. The qualitative va-
lidity of this approach has been demonstrated in a num-
ber of investigations [20-22]. By comparison between
spatially resolved measurements of the EDF in a surface
wave plasma and a self-consistent plasma model based
on the nonlocal approach, even quantitative agreement
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has been demonstrated recently [23]. The value of the
nonlocal approach for plasma modeling is obvious. Since
the EDF is determined from a one-dimensional, spatially
averaged kinetic equation, the dimensionality of the elec-
tron kinetics is always reduced to one energy dimension
regardless of the number of spatial dimensions to be con-
sidered.

In a number of publications it has been demonstrated
that the nonlocal approach can be used as a powerful
tool for plasma modeling [23-26]. Thus a demonstration
of its quantitative accuracy is highly important. How-
ever, up to now a numerical verification of the nonlocal
approach as well as a detailed discussion on its range of
applicability is still missing. In particular, the discus-
sion of the limits of applicability are mostly based on
more or less qualitative arguments which deserve a more
quantitative investigation. It is the purpose of this pa-
per to investigate the validity of the nonlocal approach
by comparison with numerical solutions of the spatially
dependent Boltzmann equation.

II. BOLTZMANN EQUATION ANALYSIS OF
THE SPATIALLY DEPENDENT ELECTRON
KINETICS

A. Kinetic equations

The situation addressed is that of a positive column.
The plasma is maintained by a temporally and spatially
constant axial electric field E,. The electron confining
space charge electric field E; || Vn, is directed radially.
For the purpose of the present discussion a self-consistent
formulation of the problem is not necessary. Thus we
restrict ourself to a parametric model. The ambipolar
potential which is connected to the transverse electric
field E, is assumed to be parabolic: ®(r) = ®.,(r/R)32.
In the present discussion, we assume a fixed value of the
potential ®,;, at the plasma-sheath boundary of —8 V.

The Boltzmann equation is simplified by employing the
well-known two-term approximation. Usually a formula-
tion in kinetic energy u = mv2/(2e) in volts is chosen:

F(u,r) = Fo(u,r) + % -Fi(u,7). (1)
Employing this approximation one obtains after some al-
gebra which is well documented in a number of textbooks
(e.g., [27]), a kinetic equation for the isotropic part of the
EDF Fy(u,r):
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Fo(u,r) is normalized to the electron density: n.(r) =
Jo© Fo(u,r)ul/2du. The terms on the left hand side of

Eq. (2) describe in the order of their appearance the free
diffusion of electrons, the counteracting mobility flow in
the space charge field, the cooling and heating by the
space charge field, the heating by the axial field, and the
energy loss in elastic collisions. The right hand side ac-
counts for the collision terms of the inelastic processes.
The collision terms for excitation and superelastic pro-
cesses read

S(FO exc,sup — Z (Vk F(]('U, r)u1/2

— vp(u £ ug)Fo(u £ ug,7)(u uk)l/z) .
(3)

Here vy, is the collision frequency of the kth inelastic pro-
cess. The plus sign in Eq. (3) accounts for excitation
collisions with a threshold energy wuy, while the minus
sign applies for the related superelastic processes. The
ionization can be included in the well-known approxi-
mation that the kinetic energy exceeding the ionization
energy is distributed equally between the scattering and
the released electron [28] (ui is the ionization threshold

energy):

S(Fo)ion = 3 (vi(w) Fo(u,r)u'/?

k
— Vi (2u + ul) Fo(2u + ub, ) (2u + u )1/2)
(4)

The spatially dependent kinetic equation (2) repre-
sents an elliptic partial differential equation which can
be solved numerically. However, for reasons of elucidat-
ing the physical nature of the problem and for numerical
convenience it proved to be useful to introduce the to-
tal energy € of electrons instead of the kinetic energy wu.
Thus the new variables are

r=r, (5)
mu?

2e

= &(r). (6)
Using this set of new variables, one arrives at a dif-

fusion type kinetic equation for the isotropic part of the
EDF Fy(e,r) [18,19]:

10 1/2 8F0(€,7‘)
o (ru D,.(s,r)—ar

+5e (wDlen T2 ) = sy ()

u'/2D,(e,r) and u'/2D.(e,r) can be considered as the
coefficients for diffusion in configuration and in energy
space [29], respectively, with
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u2D,(e,7) = 527; V(m)(u) (8)
ul/zDs(e,r) _ k 2 u(r)3/2 (9)
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Here the primes on the radial coordinate have been
dropped for simplicity. It should be noted that the kinetic
energy u is a function of the radial position now, since
the total energy € and r are considered as the indepen-
dent variables. In the collision integral S(Fp) [Egs. (3)
and (4)] u has to be replaced by € + ®(r) except for
the arguments of Fy. The elastic collision term has been
included in S(Fp) in Eq. (7).

The following considerations are limited to the case of
an argon plasma for the moment. As cross section data,
the momentum transfer cross section, a total excitation
cross section, and the ionization cross section given by
Krenz [30] have been used. Superelastic collisions have
been neglected.

The physical processes governing the formation of the
EDF can be qualitatively understood by the consider-
ation of the kinetic equation (7) and the sketch of the
range of integration in the total energy-radius domain in
Fig. 1. The curved boundary € = —®(r) is the boundary
where the kinetic energy is zero, i.e., u(r) = 0. Excitation
and ionization processes at a fixed position are possible
if the kinetic energy exceeds the lowest threshold energy
Uex. Thus the domain where inelastic processes occur is
bounded by the curve € = —®(r) + uex Or u(r) = Uex, i.€.,
by a curve defined as the space charge potential shifted
about uey. If electrons entering this domain perform ex-
citation or ionization processes, these processes can be
interpreted as the absorption of high energy particles and
the simultaneous emission of low energy particles. The
formation of the EDF can be qualitatively understood
as a diffusion process in energy and in coordinate space
with a particle source at low energies and a sink in the ab-
sorption region at high energies. The absorption of high
energy particles leads to a depletion of the EDF. Fur-
thermore, close to the wall at total energies above the
wall potential the EDF is depleted also by the outflow of
electrons to the wall.
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FIG. 1. Sketch of the domain of integration of the spatially
dependent kinetic equation.

B. Boundary conditions

The boundary conditions are a crucial aspect for the
solution of this elliptic partial differential equation. The
range of integration is depicted in Fig. 1. The slight
disadvantage of the formulation in total energy for nu-
merical purposes is that the domain of integration is not
rectangular but possesses an irregular boundary defined
by the space charge potential € = —®(7) or u(r) = 0. At
each boundary a boundary condition has to be specified.

The boundary condition on the discharge axis (bound-
ary I) is trivial, if radial symmetry of the problem is
assumed:

OFy(e,r)

o =0. (10)

=0

For the boundary at the maximum total energy e.,=
40 V (boundary II) a von Neumann condition for the
slope of the EDF has been specified. Considering the
structure of the kinetic equation (7) in the inelastic en-
ergy range, it is obvious that an exponentially decreasing
as well as an increasing solution are possible, where only
the former is physically relevant. Assuming a reasonable
slope of the solution at high energies is favorable for the
isolation of the physically reasonable solution. Errors
at this boundary can be interpreted as contributions of
the undesired solution which are, however, exponentially
damped towards low energies. Thus some rough estimate
for the slope of the EDF has been used, which was ob-
tained from Eq. (7) by neglecting the space dependence
and assuming %(€co,T) = €oo:

6F0(6, T')
Oe

where v* is the total inelastic collision frequency. As a
trial also the boundary condition Fy(€o0,7) = 0 has been
used. The deviations between solutions obtained with
both boundary conditions are negligible up to energies
some volts less than e.,, which evidences the exponential
damping of the second solution.

At the wall (boundary III) the problem is considered
up to the sheath boundary. The sheath itself is supposed
to be infinitely thin, with its main physical characteristic
being the potential drop within the sheath: &, — ®,,
where ®,, is the wall potential. Electrons approaching
the sheath boundary may have a total energy below or
above the negative wall potential —®,,. In the former
case the electrons are reflected by the space charge po-
tential in the sheath, so that the radial flux of electrons
vanishes:

Ok, 0 (12)

or r=R,e<—®,
Electrons with a total energy exceeding the wall poten-
tial may, in principle, be lost to the wall. However, for
overcoming the potential drop within the sheath, the
electrons must have a sufficient amount of kinetic en-
ergy perpendicular to the wall. This requirement defines
a loss cone in velocity space [29]. An electron is able
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to overcome the sheath potential if its velocity vector
is inside the loss cone. Assuming that the EDF at the
sheath boundary is still reasonably isotropic, the part
of the chaotic flux of electrons which is lost to the wall
(left hand side) has to be balanced by the radial flux of
electrons (right hand side):

0Q OF
F 1/2 9%« = ( —u'2D 9%
( o(&:7) 47r) ( r(e) or )

b

r=R r=R

(13)

for e > —®,,. On the left hand side the fraction §Q2/4w
represents the fraction of lost thermal flux. 09 is the
solid angle of the wall loss cone:

8 = 2m (1—,/—————_¢”+q’5“). (14)
€+ Pqp
It is derived by the simple consideration that the kinetic
energy contained in the perpendicular velocity has to be
at least equal to the sheath potential —(®,, — ®41).

For the formulation of the fourth boundary condition
at the curve u(r) = 0 (boundary IV), consideration of
the physical processes occurring at this boundary is nec-
essary. If it is assumed that all processes which generate
low energy electrons, like excitation and ionization, start
with a zero cross section at their threshold, no electrons
with exactly zero kinetic energy are created. If superelas-
tic collisions obey the same threshold behavior, there is
neither a source nor a sink of electrons along the bound-
ary u(r) = 0. Considering the left hand side of Eq. (7)
as the divergence of a diffusive flux in radius-total energy
space, the absence of particle sinks or sources along the
boundary requires the flux perpendicular to that bound-
ary to be continuous. (The term perpendicular refers to
normalized dimensionless variables, e.g., 7/R and €/e.)
Since the flux of electrons from negative kinetic energies
has to be zero, the flux normal to the curve u(r) = 0
is zero. This leads to the following relation between the
spatial and the energy flux components:

d®(r) , OF OF
- bl = (D.5= , 15
( d'l‘ D" 8T ) u=0 ( 85 > u=0 ( )
or with E; = —d®/dr
OF 2 OF _
(—EtE + Ez g) o =0. (16)

C. The nonlocal approach

An approximate and very efficient method for the so-
lution of the above problem has been proposed by Bern-
stein and Holstein in 1954 [18] and Tsendin [19]. Their
approach should be applicable in weakly collisional cases,
namely, when the energy relaxation scale length A, ex-
ceeds the typical inhomogeneity scale A:

,\ez)\(_'i’ll_

KUy + U*

)1/2 > A. (17)

Here ) is the electron mean free path and k = 2m./M,

is the fraction of kinetic energy transferred in elastic col-
lisions. The basics of the nonlocal approach should only
briefly be summarized here. For a detailed discussion the
reader is referred to Refs. [18,19]. The nonlocal approach
relies on three main ideas.

(1) The EDF is supposed to be a spatially homoge-

" neous function of the total energy of the electrons up to a

small first order correction: Fy(e,r) = Féo)(e) -+—F(§1) (e,7)
with [Fél)| < |Fé0)|. This assumption is quite obvious
for the case when electrons are confined in a space charge
potential and move without collisions and without heat-
ing (see Ref. [18]). Then the total energy is a constant of
motion. This holds still in good approximation if A, > A.
(2) The spatially dependent EDF of kinetic energy is
obtained from a “modified Boltzmann relation”

Fo(u,r) = F{ (e = u — &(r)). (18)

This relation means that for finding the EDF of kinetic
energy the contribution of potential energy ¢ < —®(r)
is cut from Féo)(e) and the rest remains as the EDF of
kinetic energy (see Ref. [23]).

(3) Since in the case Ac > A the spatial motion of
electrons takes place on a much faster time scale than
their “motion” in energy space, the EDF of total energy
is obtained from a spatially averaged kinetic equation

0 (= 0F () _ o
e (u /2D (e,r) e ) =S(Fy") . (19)

The bars denote spatially averaged quantities [18,19]
where the averages are defined by

r*(¢)
Gle,r) = %/ﬂ Gle,r) rdr . (20)

r*(e) denotes the turning point radius, defined by
u(r*(e)) = 0. The spatial diffusion term in Eq. (7)
drops out on spatial averaging. The averaged kinetic
equation (19) is formally identical to the kinetic equa-
tion for a homogeneous plasma, which has been studied
in a great number of investigations. In particular, a num-
ber of efficient numerical techniques are available for the
solution of this equation. ’
The great advantage of the nonlocal approach is that
the description of the spatially dependent electron ki-
netics is reduced to the solution of a one-dimensional,
ordinary differential equation. A number of experimen-
tal studies has given qualitative evidence to the nonlo-
cal approach [20-23]. In particular, points (1) and (2)
have been convincingly demonstrated. However, to ev-
idence the quantitative capabilities of this approach, it
is necessary to prove that the spatially averaged kinetic

~ equation (19) yields quantitatively the same results as the

spatially dependent kinetic equation (7), within its range
of applicability. This is our main aim in the discussion
in Sec. IV.

III. NUMERICAL METHOD

In order to solve the spatially dependent kinetic equa-
tion (7) numerically, the EDF Fy(e,r) is represented by
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discrete values on a grid in total energy-radius space.
For each grid point the derivatives are represented by
finite differences. For the solution of the resulting sys-
tem of linear equations a multigrid algorithm has been
used, which is described in detail by Hackbusch [31]. This
scheme has been successfully applied to the solution of
the Boltzmann equation in a planar geometry by Meijer
et al. [16].

The resulting linear system of equations £ -u = f
can in principle be solved via a relaxation method like
the GauB-Seidel method. Here £ is the matrix of coef-
ficients, u the solution vector, and f the inhomogeneity
vector. However, this method is efficient in eliminating
small scale deviations from the desired solution (high fre-
quency components) but very inefficient to long scale de-
viations (low frequency components). The idea of the
multigrid method is to make the deviation v = @1 — u
between a starting guess @1 and the correct solution u a
smooth function by applying the Gauf3-Seidel iteration
as a smoothing procedure. The smoothed deviation v,
which is the correction to be applied to @, can be better
approximated on a coarser grid than the initial one. The
equation which has to be solved for v on the coarser grid
is L-v =d, where d = £ -1 — f is the defect. It is for-
mally identical to the equation for u on the higher level.
Having found the correction v on the coarser grid, it is
extrapolated (prolongated) to the finer grid. The result-
ing high frequency errors can be efficiently eliminated by
Gaufl-Seidel smoothing. Since the equations which have
to be solved for the solution u on a higher level and v
on a lower level are equivalent, this scheme can be ex-
tended to include lower levels with coarser grids (multi-
grid scheme). The advantage of solving the problem on
a hierarchy of fine and coarse grids is that a good reduc-
tion of low frequency errors is obtained by the solution
on coarse grids while high frequency errors are eliminated
by GauB-Seidel smoothing on fine grids. Practically, the
transition from a fine to a coarse grid is performed by
halving the number of intervals in energy and radial di-
rection. ’

The time required by this technique for the solution of
the discretized Boltzmann equation for grid sizes up to
513 x 513 points in the € and r directions, respectively, is
of the order of less than one hour on a PC 486DX33. An
accuracy of the discretized Boltzmann equation of about
0.01% is achieved. Good accuracies, however, can already
be attained with grid sizes of 65 x 257 points in the » and
€ directions, respectively, since the energy variation of the
distribution function is much more pronounced than its
variation with respect to the radius.

IV. RESULTS

In order to get an impression of the influence of the
spatial inhomogeneity, in Fig. 2 EDF’s of total energy
are presented as a function of the radius for two neutral
particle densities Ny. Note that the curved boundary
corresponds to the boundary ¢ = —®(r) or u(r) = 0 (cf.
Fig. 1). This curve exactly represents the origins of the
EDEF’s of kinetic energy in different radial positions. The

result for the lower pressure [Fig. 2(a)] obviously corre-
sponds to the case of a spatially homogeneous EDF of to-
tal energy, which is addressed by the nonlocal approach.
It should be stressed again that the EDF’s of kinetic en-
ergy are far from being radially constant. For the higher
neutral density in Fig. 2(b) the EDF reveals strong devi-
ations from the spatial homogeneity, in particular, in the
energy range where inelastic collisions occur. A strong
depletion of the EDF towards the center of the discharge
is observed. This decrease of the EDF is an effect which
is caused by inelastic collisions. For a given total energy,
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FIG. 2. Solutions of the spatially dependent kinetic equa-
tion: (a) No = 3 x 10%* m™3, showing explicitly a nonlocal
behavior, and (b) No = 3 x 10?®> m~3, revealing a depletion
of the EDF in the center due to inelastic collisions and at
the sheath boundary due to the electron drain to the wall.
(E2/No = 25 x 1072 Vm?))
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the kinetic energy is maximal in the center and thus also
the efficiency of inelastic collisions. For total energies
only slightly exceeding the excitation threshold of argon
at 11.55 eV even the following situation is possible. While
electrons in the center of the discharge are already capa-
ble of performing inelastic processes, electrons with the
same total energy but close to the wall have a too small
kinetic energy to perform excitation. Thus the bound-
ary between the elastic and inelastic range of the EDF
reflects the shape of the excitation region in Fig. 1. In
the weakly collisional case in Fig. 2(a) these differences
are leveled by the fast spatial redistribution. A second
drop of the EDF close to the wall is visible for energies
above the wall potential. It is caused by the losses of
electrons to the wall. The drop of the EDF increases
with growing energy, since the loss cone angle increases,
too. It should be mentioned that the solutions presented
here are not really stationary solutions, since the electric
field is not specified self-consistently and an outflow of
electrons to the walls is permitted. In the following the
radial outflow of electrons has been suppressed by setting
—®,, = £, and the generation of secondary electrons by
ionization has been neglected so that stationary solutions
are discussed.

The nonlocal behavior of the EDF in Fig. 2(a) has an
interesting consequence for the mean kinetic energy of
the EDF’s. Since in the nonlocal regime the EDF is a
spatially homogeneous function of total energy and the
EDF of kinetic energy is found by cutting the first part
corresponding to the potential energy from Féo) (g), the
inelastic range starts at lower and lower kinetic energies
when the wall is approached. This results in a drop of the
mean kinetic energy from the center towards the wall as
shown in Fig. 3. For higher neutral densities this effect is
less pronounced. In these cases the EDF approaches the
“local” regime, where the EDF is in equilibrium with the
local electric field strength and effects of spatial inhomo-
geneity become more and more unimportant. It should
be mentioned that the above argument applies only to
convex EDF’s (dc case, rarer gases), i.e., to EDF’s for
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FIG. 3. Mean kinetic energies of the solutions of the spa-

tially dependent kinetic equation. (E./No = 25 x 102!
V m?.)

which T, = (dlnF,/de)~! decreases with growing en-
ergy. In hf plasmas concave EDF’s can be found which
are characterized by a strong group of low energy elec-
trons with a low “temperature” [32]. The removal of this
low temperature group can even lead to the reverse ef-
fect of an increase of the mean kinetic energy towards the
wall [22,23].

Up to now the discussion has been more or less qual-
itative. To give a quantitative comparison between the
results of the numerical solution of the complete kinetic
equation (7) and those obtained from the spatially aver-
aged equation (19), EDF’s are calculated from both ap-
proaches for various neutral-species densities Ny at con-
stant E,/Np. The EDF’s obtained from the spatially av-
eraged equation (19) depend only on E, /Ny so that the
same result applies to all neutral-species densities. The
results of the spatially dependent kinetic equation differ
due to the differences in the radial transport. Figure 4
demonstrates a good quantitative agreement between the
result of the nonlocal approach and the solution of the
more general equation for neutral particle densities up to
Ny = 5 x 102! m—3. This result proves that the nonlocal
approach is not only useful for qualitative explanations

| .
0 5 10 15 20 25
total energy (V)

1 1

! I L
15 20 25

|
0 S5 10
total energy (V)

FIG. 4. Comparison of the solutions of the complete
kinetic equation to the EDF resulting from the nonlocal
approach (NL) (a) in the center, (b) close to the wall
(r = 0.9R). The normalized field strength is kept constant,
E./No = 25 x 1072' Vm?, and the radius is R=1 cm.
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but is really capable of yielding quantitative predictions.
For higher neutral densities the deviations, which have
already been discussed above, start to build up. The so-
lution of the complete kinetic equation exceeds the non-
local EDF at the wall, while it is more strongly depleted
in the center.

The macroscopic properties of the discharge, in par-
ticular, the electron density profile, are most sensitively
affected by the ionization profile. Thus to judge the
quantitative accuracy obtained by the nonlocal approach,
it seems to be reasonable to compare the ground state
ionization frequencies obtained by this method to those
from the solution of the spatially dependent kinetic equa-
tion (7). This comparison is presented in Table I. It is ob-
vious that for neutral-species densities up to 3x 102! m—3
deviations between the ionization frequencies of the two
approaches are of about 30%. If one keeps in mind that
the typical accuracy of experimentally determined ioniza-
tion cross sections is of the same order, this seems to be a
reasonable accuracy for a kinetic approach. Figure 5(a)
shows the corresponding energy relaxation lengths for
constant kinetic energy which are of course energy depen-
dent. In order to determine the ionization frequency with
an accuracy of a few percent in argon the energy range
up to about 20 eV is of interest. For Ny = 3 x 102! m—3
the energy relaxation length (for a fixed kinetic energy)
is almost equal to the tube radius. Thus on the first
view the condition A.(u) = R is sufficient to obtain the
above 30% accuracy of the EDF by the nonlocal ap-
proach. However, it is more appropriate but also more
difficult to consider a cross section averaged energy re-
laxation length, since during the electrons’ motion across
the discharge the kinetic energy is not constant. The ex-
act cross section averaged energy relaxation length thus
depends also on the exact shape of the space charge po-
tential. For the potential used in this investigation one
obtains the energy relaxation lengths shown in Fig. 5(b).

For Ng = 3 x 102! m~2 A.(¢) 2 3R holds over the in-
teresting energy range. Since the cross section averaged
energy relaxation length requires the knowledge of the
potential it may be more convenient to consider the non-
averaged A.(u). Here the condition A.(u) =~ R can serve
as a rough guide for the upper limit of applicability of
the nonlocal approach.

Finally, it should be mentioned that deviations from
the spatial homogeneity of the EDF of total energy may

TABLE I. Ratios v; ni/Vi ke of ionization frequencies in the
center obtained from the nonlocal approach (subscript nl)
to those from the solution of the spatially dependent kinetic
equation (subscript ke) for different neutral densities No and
normalized field strengths E./No.

E./No (1072' Vm?) 12.5 25.0 37.5
No (m_s)
1 x 10% 1.04 1.06 1.06
3 x 102t 1.29 1.32 1.34
1 x 1022 1.77 1.92 1.98
3 x 1022 8.21 9.62 7.44
1x 102 145.13 34.28 14.65
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FIG. 5. The energy dependence of the energy relaxation
length: (a) for fixed kinetic energy, and (b) for constant total
energy and averaged over the discharge cross section.

not only be caused by collisional effects but also be due to
an inhomogeneity of the axial electric field. Such an ef-
fect may be important for microwave or rf plasmas where
frequently very inhomogeneous electric field distributions
are found. To study this effect, a radial profile of the axial
field has been assumed: E,(r) = E, o[1+8(r/R)?]. (Such
a profile is, of course, not realistic for a positive column,
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_1—
—~—2r 7
© L B
=3 1
S _ 4l |
a4
ST \ i
-5 \4 B
L A\ L
—6 ol b Yy Ny N
0 5 10 15 20 25 30 35

total energy (V)

FIG. 6. Influence of the radial inhomogeneity of the
axial electric field for No = 5 x 102! m™® and a
field profile E.(r) = E.o[l + B(r/R)?] with R=1 cm.
(E.0/No =25 x 1072 Vm?))
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but may similarly be found, for instance, in overdense
microwave discharges.) In Fig. 6 the EDF’s in the cen-
ter and close to the wall are given for a neutral-species
density of No = 5 x 102! m~3 and different 5. While
for 3 = 0 the EDF’s in the center and close to the wall
almost coincide (nonlocal case) some deviations build up
for increasing 3. However, even for 8 = 4 the deviations
are comparatively small so that the nonlocal approach is
still a good approximation. It should be noted that in the
local limit, i.e., when the EDF is assumed to be in equi-
librium with the local electric field, this radial increase of
the electric field would have produced drastically differ-
ent EDF’s. Thus the radial redistribution of energy due
to the spatial motion of electrons is still a very important
process in the considered case.

V. SUMMARY AND CONCLUSIONS

We have presented the numerical solution of the spa-
tially dependent kinetic equation for the isotropic part of
the EDF obtained within the two-term approximation.
Comparisons with results of the nonlocal approach yield
a good quantitative agreement for neutral-species den-
sities up to about Ny = 3 x 102! m~3 at R=1 cm in
argon. The deviations of the ionization frequencies are
of the order of 30% at this neutral-species density. As
a rough estimate for the upper limit of the range of ap-
plicability the condition A.(u) = R (for the interesting
energy range) can be employed. It has been shown that
a spatially inhomogeneous maintaining electric field fa-
vors deviations from the spatial constancy of the EDF
of total energy. However, these deviations are much less
pronounced than have to be expected from a local model,
where the EDF is assumed to be in equilibrium with the
local electric field.

It should once again be pointed out that within its
range of applicability the nonlocal approach is an ex-
tremely valuable tool for the description of the spatially
dependent electron kinetics. Regardless of the number of
spatial dimensions to be considered, the electron kinetics

is reduced to a one-dimensional problem in total energy
space. By the use of the nonlocal approach highly effi-
cient kinetic models can be developed. Recently it has
been exemplified by a spatially two-dimensional kinetic
model for an inductively coupled rf discharge which can
be easily solved on a PC486 computer within one hour
[26].

The great value of the nonlocal approach for efficient
plasma modeling makes further investigations necessary.
Thus the range of applicability should be investigated
for molecular gases which are interesting for many ap-
plications. In these gases vibrational excitation with low
threshold energies may restrict the range of applicability
of the nonlocal approach to much lower neutral-species
densities than in rare gases. Furthermore, the transi-
tion to the local regime should also be investigated in
future studies. At high neutral-species densities, when
the energy relaxation length is much smaller than the
typical inhomogeneity scale over the whole energy range
of the EDF, the EDF should be in equilibrium with the
local electric field and the spatial inhomogeneity should
become unimportant. Under these conditions the EDF
could be obtained via solution of the kinetic equation
for a homogeneous plasma using the local electric field
strength, which again is a one-dimensional ordinary dif-
ferential equation. Thus it may be possible to use simpli-
fied approaches in the weakly as well as in the highly col-
lisional case. In the intermediate range of neutral-species
densities probably the solution of the spatially dependent
kinetic equation as presented here remains the appropri-
ate method to describe the spatially dependent electron
kinetics.
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